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MHD turbulence at moderate magnetic
Reynolds number

By B. Knaepen, S. Kassinos{ AND D. Caratii

1. Introduction
1.1. Motivation and objectives

Magnetohydrodynamics applies to many conductive fluid and plasma flows encountered
in nature and in industrial applications. In numerous circumstances, the flow is subject
to a strong mean magnetic field. This happens in the earth’s liquid core and is ubiquitous
in solar physics for topics like sunspots, solar flares, solar corona, solar wind etc. Mean
magnetic fields play an important role on even larger scales, for instance in the dynamics
of the interstellar medium. Among the industrial applications involving applied external
magnetic fields are drag reduction in duct flows, design of efficient coolant blankets in
tokamac fusion reactors, control of turbulence of immersed jets in the steel casting process
and advanced propulsion and flow control schemes for hypersonic vehicles.

Depending on the application, the magnetic Reynolds number, R,,, can vary tremen-
dously. In astrophysical problems, R,, can be extremely high as a result of the dimensions
of the objects studied. On the contrary, for most industrial flows involving liquid metal,
R,, is very low, usually less than 10~2. When an external magnetic field is present, it
is customary at such low values of R, to make use of the so-called quasi-static (QS)
approximation. In this approximation, induced magnetic fluctuations are much smaller
than the applied magnetic field and the overall magnetic effect amounts to adding in the
Navier-Stokes equations an extra damping term which only affects Fourier modes having
a component parallel to the magnetic field (more details below). The derivation of the
QS approximation involves taking the limit of vanishing R,, and its domain of validity
is thus an interesting question. Indeed certain applications, such as advanced schemes
for the control of magnetogasdynamic flows around hypersonic vehicles, involve values
of R,, of the order 1 to 10. It is thus valuable to possess reliable approximations in this
regime that can be used in place of the full non-linear MHD.

The limit of vanishing R,, (with mean magnetic field) has been the subject of several
theoretical studies in the past. In Lehnert (1955) the author concentrates on the final
period of decay of a convective fluid governed by the completely linearized MHD equations
(Re < 1, R,, < 1). The suppression of turbulence by a magnetic field was studied in
Moffatt (1967) (Re > 1, R, < 1) again using linearized equations. In short, both
works focus on the time evolution of the energy of the Fourier modes as a function of
their wave vectors. Using prescribed energy spectra, Moffatt (1967) also obtains global
energy decay rates. Another theoretical investigation relevant to the present study is the
work of Davidson (1995). In that article, the author derives in the quasi-static framework
the conservation of momentum and angular momentum parallel to the direction of the
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magnetic field (neglecting viscous dissipation). Focusing on jets and vortices, the author
then describes how the flow structures need to elongate in the direction of the magnetic
field in order to lower their energy loss while satisfying the above conservation laws. The
elongation of structures in the direction of the magnetic field was also studied earlier in
Sommeria & Moreau (1982) however in the context of linearized equations.

To our knowledge, the first numerical study of MHD turbulence in the regime R,,, < 1
is due to Schumann (1976). All the simulations in that work were done using a modified
3D spectral code implementing the QS approximation. However, due to the computer
resources available at that time, the resolution of the simulations was limited to 323. The
numerical experiment of Schumann (1976) reproduces the thought experiment described
in Moffatt (1967) in which an initially homogeneous isotropic flow is suddenly subjected
to an applied external magnetic field. A quantitative description of the magnetic damping
and building of anisotropy is presented as well as the dependence of the results on the
presence or not of the non-linear term in the Navier-Stokes equation. Again considering
the QS approximation, the case of forced turbulence in a 3D periodic domain has first
been studied in Hossain (1991) and more recently in Zikanov & Thess (1998).

Performing FMHD simulations in the limit of low R,, is impractical. Aside from the
increased complexity arising from having to carry a separate evolution equation for the
magnetic field, the main problem lies in the time-scales involved in the problem. Indeed
at vanishing magnetic Reynolds number, the magnetic diffusion time-scale tends to zero.
The only possibility in that case is to resort to the QS approximation for which this
time-scale is not explicitly relevant. Simulations of FMHD have thus been restricted so
far to cases where the magnetic and kinetic time-scales are of the same order. This is the
case when the magnetic Prandtl number (see below) is close to 1. Among the numerous
previous numerical studies of MHD in this regime, we mention the work of Oughton et al.
(1994) which is the most relevant to the present discussion. In that work, the authors
consider the same 3D periodic geometry with an applied external magnetic field as in
Schumann (1976).

In the present article we will consider the decay of MHD turbulence under the influence
of a strong external magnetic field at moderate magnetic Reynolds numbers. Typical
values of R,, that are considered here range from R,, ~ 0.1 to R,, ~ 20. As a comparison,
the initial kinetic Reynolds number common to all our simulations is Re; = 199. This
means that the range of Prandtl numbers explored is 5 x 10™% to 10~!. Our motivation
is mainly to exhibit how the transition from the QS approximation to FMHD occurs. At
the lowest values of R, studied here, the QS approximation is shown to model the flow
faithfully. However, for the higher values of R,, considered, it is clearly inadequate but can
be replaced by another approximation which will be referred to as the Quasi-Linear (QL)
approximation. Another objective of the present study is to describe how variations in
the magnetic Reynolds number (while maintaining all other parameters constant) affect
the dynamics of the flow. This complements past studies where variations in either the
strength of the external magnetic field or the kinetic Reynolds number were considered.

This article is organized as follows. In section 2 we recall the definition of the quasi-
static approximation. Section 3 is devoted to the description of the numerical experiments
performed using the quasi-static approximation and full MHD. In section 4 we describe
the quasi-linear approximation and test it numerically against full MHD. A concluding
summary is given in section 5.
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2. MHD equations in the presence of a mean magnetic field
2.1. Dimensionless parameters

Two dimensionless parameters are usually introduced to characterize the effects of a
uniform magnetic field applied to unstrained homogeneous turbulence in an electrically
conductive fluid. They are the magnetic Reynolds number R,,, and the interaction number
N (also known as the Stuart number):

vL L? L oB%L T
Rp=—=(—)/(=), N= =—. (2.1)
n n v pu Tm
In the above expressions, v = \/(u;u;) /3 is the r.m.s. of the fluctuating velocity wu;; L

is the integral length scale of the flow; n = 1/(ou) is the magnetic diffusivity where o is
the electric conductivity of the fluid, and p is the fluid magnetic permeability; p is the
fluid density and B is the strength of the applied external magnetic field. The magnetic
Reynolds number represents the ratio of the characteristic time scale for diffusion of the
magnetic field L? /7 to the time scale of the turbulence 7 = L/v. Related to R,,, one can
also define a magnetic Prandtl number representing the ratio of R,, to the hydrodynamic
Reynolds number Rey,,

A . (2.2)
n  Rep v

The interaction number N represents the ratio of the large-eddy turnover time 7 to the
Joule time 7, = p/(0B?), i.e. the characteristic time scale for dissipation of turbulent
kinetic energy by the action of the Lorentz force (Davidson 2001). N can be viewed
as a measure of the ability of an imposed magnetic field to drive the turbulence to
a two-dimensional three-component state. Indeed, under the continuous action of the
Lorentz force, energy becomes increasingly concentrated in modes independent of the
coordinate direction aligned with B. As a two-dimensional state is approached, Joule
dissipation decreases because fewer and fewer modes with gradients in the direction of B
are left available. In addition, the tendency towards two-dimensionality and anisotropy
is continuously opposed by non-linear angular energy transfer from modes perpendicular
to B to other modes, which tends to restore isotropy. If IV is larger than some critical
value N, the Lorentz force is able to drive the turbulence to a state of complete two-
dimensionality. For smaller NV, the Joule dissipation is balanced by non-linear transfer
before complete two-dimensionality is reached. For very small IV, the anisotropy induced
by the Joule dissipation is negligible.

P, =

2.2. The Quasi-Static approximation

If the external magnetic field B{** is explicitly separated from the fluctuations b;, the
MHD equations can be written as

Oyu; = —0i(p/p) — u;0ju; + (N—I‘O)(B;mt +0;)0;(B{™ + b;) + vAu,;,  (2.3)

&g(Bf” + bz) = —Ujaj(BfT“t + bl) + (B;wt + bj)ajul + nA(BZeIt + bl), (24)

where p is the sum of the kinematic and magnetic pressures and v is the kinematic
viscosity. Since we consider initially isotropic, freely decaying homogeneous turbulence
there is no mean velocity field.

Also, the external magnetic field is taken to be homogeneous and stationary. Therefore,
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Resolution 2563
Box size (Ix x 1y X 1) 2w X 27 X 27
Rms velocity 1.76
Viscosity 0.006
Integral length-scale (37/4 x ([ k™ 'E(k)dr/ [ E(k)dk)) 0.679
Re =uL/v 199
Dissipation (€) 8.39
Dissipation scale (y = (v3/¢€)'/)) 0.0127
Kmaa?y 1.62
Microscale Reynolds number (Rx = \/15/(ve)u®) 53.5
Eddy turnover time (7 = (3/2)u/e)) 0.554

TABLE 1. Turbulence characteristics of the initial velocity field. All quantities are in MKS

units.

(2.3) and (2.4) reduce to

1 1
i = —0i(p/p) — u;0u; + —b;0;b; + — B 9;b; + vAw,, 2.5
t ( /P) 1% (,up) 1% ('up) J J ( )
Oib; = —u]ﬁjbi + bjajui + sztaju,» + nAb;. (2.6)

As pointed out in Roberts (1967), this system can be simplified considerably for flows
at low magnetic Reynolds numbers. Using a Fourier representation for u; one has in this
limit,

(Bea:t . k)2

3tum(k, t) = —Z'k‘mp/(k, t) - [U]ajuz]m(k, t) — 0 pk‘z

um(k,t) — ngum(k, t),
(2.7)

where p’ = p/p and u, (K, t) = > um (X, t)e " %, Thus one can take into account the ef-
fect of the magnetic on the velocity field through a damping term and not solve explicitely
the evolution equation for the magnetic fluctuations.

In the next sections, we test the QS approximation by comparing its predictions to
those obtained using the full MHD equations (2.5) and (2.6).

3. Numerical Results: QS vs. FMHD
3.1. Parameters

To test the domain of validity of the QS approximation, we have used two different
pseudo-spectral codes. The first one simulates the full MHD equations (2.5) and (2.6),
while the second one simulates (2.7). All the runs presented here have a resolution of
2563 Fourier modes in a (27)% computational domain.

The initial condition for the velocity field is common to both codes. It consists of
a developed turbulence field that is adequately resolved in the computational domain
adopted. Some of its characteristics are listed in table 1. For the full MHD case, an initial
condition for b; has to be chosen at ¢t = tyg. Here we have made the choice b;(tg) = 0.
In other words, our simulations describe the response of an initially non-magnetized
turbulent conductive fluid to the application of a strong magnetic field. The corresponding
completely-linearized problem has been described in detail in Moffatt (1967). For the QS
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# m  BF N(to) Rml(to)
1 11.95 5.57 1 0.1
2 0.239 0.787 1 5.0
3 0.119 .557 1 10.0
4 0.0597 0.394 1 20.0
5 11.95 17.6 10 0.1
6 0.239 249 10 5.0
7 0.119 1.76 10 10.0
8 0.0597 1.24 10 20.0

TABLE 2. Summary of the parameters for the different runs performed

FIGURE 1. Evolution with time of the kinetic energy at different Stuart numbers and magnetic
Reynolds numbers. = QS approximation; Ry, =0.1;------ Ry, =5;,—— Ry, =10;
—— Ry, =20; ——— B“'=0.

approximation case, an initial condition for b; is of course not required since the equation
for the velocity field is completely closed.

In order to distinguish between our numerical runs, we will vary the values of the
interaction parameter and the magnetic Reynolds number (at ¢ = tg). When these two
quantities are set, the only free parameters in the evolution equations (2.5), (2.6) and
(2.7) are completely determined, i.e.:

Nv? vl

Bezt — — ,
A "R, "T R,

(3.1)

where BG™ is the external magnetic field strength in Alfven units B = B*!/, /up and
the values of v and L are listed in table 1. The values of R,, and N for all our runs are
listed in table 2 along with the corresponding values of 7 and B5.

3.2. Results

In this section we present some results obtained by performing the simulations detailed
in section 3.1.



454 B. Knaepen, S. C. Kassinos AND D. Carati

FIGURE 2. Evolution with time of the magnetic energy computed from (3.3). —— R,, = 0.1;
------ Ry =5;—— Ry =10; —— Ry =20

3.2.1. Kinetic energy decay

In fig. 1 we plot the time evolution of the normalized kinetic energy,

1 1

Er(0) /dxiui(x)ui(x). (3.2)
In this and subsequent figures, time has been non-dimensionalized using the Joule time-
scale. Keeping N constant, it is clear from the figure that as the magnetic Reynolds
number is decreased, the decays converge to the quasi-static limit (dotted curve). At
R,, = 0.1, FMHD and the QS approximation are barely distinguishable for the cases
run. As expected, the discrepancy between FHMD and the QS approximation is quite
severe at intermediate values of the R,,,. We also note here the presence of oscillations in
the kinetic energy at long times for the case N = 10. Their origin is well known (Lehnert
1955; Moffatt 1967) and result from the laminarization of the flow for long times. In
that case the MHD equations (2.5) and (2.6) reduce to their linear versions and become
(in Fourier space) a system of linear oscillators coupled through the external magnetic
field. In both figures, the case B¢** = () has been included to emphasize the role of the
magnetic field in the other runs.

Ex =

3.2.2. Magnetic energy evolution

The next diagnostic we examine is the evolution of the energy contained in the magnetic
fluctuations. This quantity is defined through,

Ey = /dk%|bi(k, t)[2. (3.3)

and its time evolution is presented in Fig. 2. After some time, the magnetic energies all
reach their maximum value and then start to decrease. The rate of decay increases at
lower magnetic Reynolds numbers since in the limit chosen, n = vL/R,,. Related to the
oscillations in the kinetic energy we observe for N = 10 some oscillations in the magnetic
energy at long times.

3.2.3. Anisotropy

A characteristic feature of MHD flows subject to a strong external magnetic field is the
appearance of a strong anisotropy in the flow. In the QS approximation this is easily seen
by observing that in eq. (2.7) only Fourier modes with wave vectors having a nonzero
projection onto BE®! are affected by the extra Joule damping. In order to quantify the
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FIGURE 3. Anisotropy angle 6, computed from (3.4). = QS approximation;
Ry = 0.1;------ Ry =5; == Ry =10; —— Ry, = 20.

anisotropy we follow the approach of Shebalin et al. (1983) and Oughton et al. (1994) by
introducing the anisotropy angles,

Ly SR )

RO SV PRI (34)
2 2

g, — SR 5

> k2o (k)2
where k| = k2 + k; and the summations are extended to all values of k.

When the flow is completely isotropic, one has tan?6, = 2 implying 6, ~ 54.7°.
If the flow becomes independent of the z-direction then tan?6, — oo or equivalently
0., — 90°. Figure 3 shows the evolution with time of 6, for the different runs. At N =1
the anisotropy is only important for the QS and R,, = 0.1 runs. For N = 10 all the runs
become highly anisotropic.

The initial anisotropy in the magnetic field can also be computed exactly. At time
to + At (At < 1), b;(k) is given by b;(k, to + At) = iB¢k,u;(k, to) At. Using this form
and the fact that u; is initially homogeneous and isotropic one gets after some direct
calculations,

tan” 0y (tg + At) = g ie., Op(to + At) ~ 39.2°. (3.6)

Figure 4 shows the evolution with time of 8} for the different runs. Both plots exhibit
surprising behavior. In the case N = 1, one would expect 6, to remain close to its initial
value since the velocity field remains largely isotropic (as it is at the beginning of the
simulation). Instead, ), evolves to a value compatible with an isotropic magnetic field.
This is also the case for the runs at N = 10 although there the velocity field clearly
evolves to an anisotropic state.

4. The Quasi-Linear approximation
4.1. Governing equations

The preceding section indicates that for our numerical simulations at magnetic Reynolds
numbers of the order 10~ the QS approximation and FMHD produce nearly identical
results. For higher values of R,,, the QS approximation is not valid and has to be replaced
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FIGURE 4. Anisotropy angle 6, computed from (3.5). = QS approximation;
Ry = 0.1; ------ Ry =5; == Ry =10; —— Ry, = 20.

to predict the flow accurately. Since magnetic fluctuations remain small in all the runs
performed, it is natural to still consider a linearized induction equation. We thus consider
here an intermediate approximation which is defined by the following simplified MHD
equations:

1
(1p)
8tbi = B;Itajui + 77Ab1 (42)

8tui = —Bz(p/p) - ujajui + Bj“é)jbi + VAUZ', (41)

This approximation will be referred to as the quasi-linear (QL) approximation since only
the non-linear terms involving the magnetic field are discarded whereas the non-linear
convective term in the velocity equation is retained. Of course, if 9;b; is neglected in (4.2)
one immediately recovers the quasi-static approximation.

4.2. Results

In order to compare the QL approximation with full MHD, we have performed the same
numerical simulations as described in section 3, but this time using (4.1) and (4.2) instead
of the QS approximation.

4.2.1. Kinetic energy decay

In fig. 5 we present the time history of the kinetic energy (as defined by (3.2)) obtained
from both FMHD and the QL approximation. For reference, we have also included the
predictions obtained using the QS approximation. For N = 1, the QL approximation
and FMHD agree nearly perfectly for all values of the magnetic Reynolds number. For
N =10, the agreement is still very good.

4.2.2. Magnetic energy evolution

Figure 6 represents the time evolution of the energy of the magnetic fluctuations (de-
fined by (3.3)) for the different runs. For N = 1 there is a systematic overestimate of
the energy by the QL approximation which (as expected) increases with the magnetic
Reynolds number. Contrary to the predictions of the kinetic energy, the performance of
the QL approximation is better here when N = 10. Even at R,, = 20, the agreement
between the QL approximation and FMHD is very good.
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FIGURE 5. Evolution with time of the kinetic energy.
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FIGURE 6. Evolution with time of the magnetic energy.
approximation.
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4.2.3. Anisotropy

In fig. 7, the anisotropy angle 6,, computed from the QL approximation and FMHD is
displayed. For reference we have also included the anisotropy evolutions predicted using
the QS approximation, which as expected are inadequate especially for R,, = 10 and
R,, = 20. In the runs with N = 1, the anisotropy predicted by the QL approximation
is always more pronounced than for FMHD. For the runs at NV = 10, the same remark
holds for the beginning of the decay. After a certain amount of time, the trend inverses
and the anisotropy is more pronounced in the case of FMHD. This appears to be due to
a rapid saturation of anisotropy in the QL runs.

The comparison of the anisotropy angles 6, are presented in fig. 8. Here the trend is
given by an underestimate of 6, by the QL approximation. The discrepancy is somewhat
more important for the runs where N = 1.

The initial trends observed for both #,, and 6, are to be expected. Indeed, it is clear that
the additional non-linear terms present in the FMHD equations tend to restore isotropy.
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FIGURE 7. Evolution with time of the anisotropy angle 0,,. FMHD; --—- QL
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FIGURE 8. Evolution with time of the anisotropy angle 05.
approximation.

This effect will be more pronounced at the beginning of the decay when the flow is more
turbulent. In the case of 0, it is therefore natural to observe an initial overestimate of 6,
by the QL approximation. Similarly, we know from FMHD results discussed earlier that
0 starts from an initial value of ~ 39.2° and evolves progressively towards values close
to the isotropic value of 54.7°. This trend should be slower in the QL case because of the
absence of the non-linear terms and this is exactly what is observed in fig. 8.

5. Conclusions and future plans

The Quasi-Static (QS) approximation offers a valuable engineering approximation for
the prediction of MHD flows at small magnetic Reynolds numbers R, < 1. However, im-
portant technological applications, such as advanced propulsion and flow control schemes
for hypersonic vehicles, involve MHD and MGD flows at moderate magnetic Reynolds
numbers 1 £ R, < 20. In order to devise successful schemes for the prediction of these
technological flows we need to understand better the intermediate regime that bridges
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the domain where the QS approximation is valid and the high-R,, regime, where full
nonlinear MHD (FMHD) is the only resort.

By studying the case of decaying homogeneous MHD turbulence, we have established
that the Quasi-Static (QS) approximation is valid for R,, < 1, but progressively deterio-
rates as R,, is increased beyond 1. The magnetic Stuart number does not seem to have
a strong effect on the accuracy of the QS approximation. That is, at a given R,,, the
accuracy of the QS approximation is roughly the same for N =1 as it is for N = 10.

We have studied another approximation, the QL approximation, for use at higher R,,.
As with the QS approximation, this approximation assumes small magnetic fluctuations,
but it resolves the time dependence of these fluctuations explicitly. The QL approxima-
tion, as we expected when we proposed it, performs like the QS approximation for R,, < 1,
but has the advantage that it retains good agreement with FMHD for 1 £ R,, < 20. It
should be noted that R,,, = 20 is the highest value of the magnetic Reynolds number that
we have tested during this effort. Therefore, our numerical simulations indicate that the
QL approximation should be adopted in place of the QS approximation for flows with a
moderate value of the magnetic Reynolds number (0 £ R,, £ 20).

We are currently engaged in the development of structure-based closures of the QL
approximation for homogeneous turbulence in a conductive fluid subject to mean defor-
mation and a uniform external magnetic field. This effort builds on earlier work that
dealt with the modeling of decaying homogeneous MHD turbulence.
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